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Summary� We present a new technique for the numerical integration over R� a square or triangle�
of an integrand of the form �ru�TB�rv�� This uses only function values of u� B� and v� avoiding ex�
plicit di�erentiation� but is suitable only when the integrand function is regular over R� The technique
is analogous to Romberg integration� since it is based on using a sequence of very simple discretiza�
tions J�m�� m � 	� 
� �� ���� of the required integral and applying extrapolation in m to provide closer
approximations� A general approach to the problem of constructing discretizations is given� We pro�
vide speci�c cost�e�ective discretizations satisfying familiar� but somewhat arbitrary guidelines� As in
Romberg integration� when each component function in the integrand is a polynomial� this technique
leads to an exact result�
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�� Introduction� The purpose of this article is to provide a numerical method for
the evaluation of the two�dimensional integralZ Z

R

�ru�TB�rv� dxdy� ��	��

where R is either a parallelogram or a triangle and B is a 
� 
 matrix of functions on
R	 The method is e�ective in cases in which each of the constituent functions �from

which the integrand is formed� is regular in and near R	 Using �nite di�erence and
�nite mean operators �see� e	g	� ��	� or ��	��� below�� we construct simple elementary
discretizations J�m� of ��	�� above	 These discretizations use only function values of

u�x�� v�x�� and bi�j�x�� i� j � �� 
�

where abscissas x � �x� y� � R�� are located on grids �tted to R �see� for example�

Figures 
	�� 
	
� and �	��	
These discretizations are constructed in such a way that they enjoy an Euler�

Maclaurin type expansion and so may be used in the context of extrapolation	 This

constitutes an application of Richardson�s deferred approach to the limit ��� and a gen�
eralization of Romberg integration described in ��� and Bauer� Rutishauser� and Stiefel
���	 Speci�cally� it comprises a two�dimensional version of a method for calculating
Stieltjes�s integrals� as introduced by Lyness ���	
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The primary application of the results in this article is the evaluation of �nite

element sti�ness matrices� which requires the computation of integrals of the form
��	��	 The article thus presents a generalization of a prototype result of R�ude ����	 In
this present article� however� both the underlying ideas and the detailed development
provide the basis for the evaluation of similar integrals whose integrands may involve

any speci�ed mixture of functions and derivative functions of any order	
In the rest of this section� we discuss some preliminaries	 In particular� we specify

the coordinate system in which we develop the theory	 In Section 
� we list some
known results concerning minor generalizations of the Euler�Maclaurin expansion to

numerical quadrature over squares and triangles	 In Section �� we provide the underlying
theory and de�ne a set of elementary discretizations J�m� of ��	��� and in Section � we
construct several special discretizations	 While individually of only modest accuracy�

these have the property that one may apply extrapolation to obtain successively better
approximations	 Finally� in Section �� we illustrate the operation of some of these
methods by means of a numerical example	

Our theory is restricted to the case in which R is a nondegenerate parallelogram �

or a triangle �	 Without loss of generality� we assume that one vertex of R is located
in the origin� so that the vertices of R are

�� l�� l�� �and l� � l� for the parallelogram��

as illustrated in Figure �	�	
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Fig� ���� Basic parallelogram
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Therefore� we can set

�ru�TB�ru� �

��
���n�
���n�

�
u

�T

A

�
���n�
���n�

�
v�

where A is uniquely de�ned by

B �

�
c� c�
s� s�

�
A

�
c� s�
c� s�

�
�

provided� of course� that jl� � l�j �� �� that is� the triangle or parallelogram is nonde�

generate	 It now remains to evaluateZ Z
R

��u��n�� �u��n��

�
a�� a��
a�� a��

� �
�v��n�
�v��n�

�
dxdy� ��	
�

This comprises four terms	 In most of the theory we shall treat each term separately	
Thus we treat the numerical evaluation of

If� �

Z Z
R

f��x� y� dxdy� ��	��

where

f��x� � f��x� y� �
�u

�ni
�x�aij�x�

�v

�nj
�x�� for i� j � �� 
� ��	��

We are looking for a discretization based on function values of a� u� and v	

�� Numerical Quadrature Error Expansions� In this section� we describe
some of the underlying theory for using extrapolation integration over a parallelogram
or triangle	

We denote the integral by

I�R�� ��

Z Z
R

� dxdy for R � ���	

For R � �� we restrict ourselves to quadrature rules of the form

Q���� ��
�X

n��

wn��xn�� �
	��

which integrate the constant function correctly	 Thus

�X
n��

wn � A��� � jl� � l�j� �
	
�

where A�R� denotes the area of R	 For the parallelogram �� the m��copy of �
	��

is obtained by subdividing � into m� congruent parallelograms and applying Q���
separately to each of its m� elements �see Figure 
	��	 Thus

Q�m����� ��

�X
n��

wn

m�

m��X
k��

m��X
l��

�

�
�

m
�xn � tk�l�

�
� �
	��

�



where tk�l � kl� � ll��

The de�nition of an m��copy version of a rule for the triangle is marginally more
complicated	 We de�ne

Q�m����� ��
�X

n��

wn

m�

m��X
k��

m���kX
l��

�

�
�

m
�xn � tk�l�

�

�
��X

n��

�wn

m�

m��X
k��

m���kX
l��

�

�
�

m
��xn � tk�l�

�
� �
	��

This assigns properly scaled versions of one rule to each member of one set of elementary
triangles and a properly scaled version of another rule to each member of another set	
The �rst set comprises the m�m � ���
 triangles similarly situated to �� and the
second set the other m�m � ���
 triangles	 The corresponding rules are respectively

one involving only wn and xn and one involving only �wn and �xn	
It is convenient to restrict these abscissas to satisfy

�X
n��

wn �
��X

n��

�wn � A���� �
	�

This restriction ensures that� for a constant integrand f�

lim
m���

Q�m�f � If�

Note that Q������ does not require the second set of terms in �
	��� but that these
are required for other values of m to de�ne the m��copy version	 A brief description
of the geometry and of some of the associated theorems is given in Lyness and Cools

���	 An asymptotic error expansion of the quadrature rule �
	�� or �
	�� is given by the
following generalization of the Euler�Maclaurin asymptotic expansion	

Theorem ���� Let Q�m� be given by ����� or ����� and the abscissas satisfy �����
and ���	�
 respectively� let all derivatives of � of total order p or less be integrable over

R� Then

Q�m��R��� I�R�� �

p��X
���

B��Q�R���

m�
�
Cp�Q�R���m�

mp
� �
	��

where B� is independent of m and Cp satis�es the uniform bound

Cp�Q�R���m� � �Cp�R� for all m� �
	��

The nature of the coe�cients B� in this expansion is discussed in many places� including
Lyness ��	 A detailed integral representation of the remainder term is given in Lyness

and McHugh ���	
The following de�nitions are minor variants of standard de�nitions	

�



Definition ����

�� The set of rules Q�m��R� is termed to be of polynomial degree d when every
member of the set integrates all polynomials of degree d correctly�

�� The set of rules Q�m��R� is termed centrally symmetric when
 for all m


Q�m��R�� � Q�m��R�� whenever ��x� � ��l� � l� � x�

for all x � R�

When R � �� only one value of m is required to verify these properties	 When
R � �� two distinct values are required	

The reader may verify that� following De�nition 
	
� the rules in �
	�� are centrally
symmetric if � � ��� wn � �wn� and xn� �xn � l�� l� for all n � �� 
� � � � � �� moreover� all

centrally symmetric rules may be expressed in a form satisfying these conditions	
We collect several known results in the following�
Theorem ���� Under the hypothesis of Theorem ���
�� When Q�m��R� is centrally symmetric
 B��Q�R��� � � for all � odd�

�� When Q�m��R� is a rule of polynomial degree d
 B��Q�R��� � � for � �
�� 
� � � � � d�

�� When ��x� y� is a polynomial of degree d
 B��Q����� � � for � � d and
B��Q����� � � for � � d� ��

When R is the parallelogram �� the de�nition of central symmetry is obvious	
However� when R is the triangle �� central symmetry relates the second set of terms
in �
	�� with the �rst	 It reduces to central symmetry about the midpoint of any edge

of an elementary triangle	 This property is related to the vanishing of the odd terms
in the Euler�Maclaurin expansion	 The rules illustrated in Figure 
	
 below are all
centrally symmetric under this de�nition	

The theory above is wider than we need for immediate applications	 For �� we use

only the center rule

Q�m����� �
A���

m�

m��X
k��

m��X
l��

�
�uk�l

m

�
� �
	��

Here

uk�l � �k � ��
�l� � �l � ��
�l�� �
	��

The points x � �
m
uk�l� k� l � �� �� � � � �m � �� form the center grid
 which is illustrated

in Figure 
	�	 The vertex grid consisting of x � �
m
tk�l� k� l � �� �� � � � �m� is illustrated

in Figure �	�	

For the triangle� we employ three rules	 The �rst is an adaption of the center rule
�
	�� to the triangle�

Q�m����� �
A���

m�

m��X
k�l��

�m�k�l���
�uk�l

m

�
� �
	���

�
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Fig� ���� Center grid for � and �� The points are abscissas used in ����� and ������� respectively�

where

�� �

��
	

� for 	 
 �
��
 for 	 � �
� for 	 � �

�
	���

is the Heaviside step function	 This function is used here to eliminate points required
in �
	�� that are outside the triangle � and to assign a factor of ��
 to those that lie

on the boundary	 �The upper limits of the summation over l and k may formally be
replaced by �	� This rule assigns a function value to the midpoint of one of the three
edges of each of the elementary triangles	

We shall also employ two rules that are e�ectively variants of this one� they assign

the function value to the other two edges� respectively	 These are

Q�m����� �
A���

m�

m��X
k��

m���kX
l��

�l�

�
�k � �

��l� � l l�

m

�
�
	�
�

and

Q�m����� �
A���

m�

m��X
k��

m���kX
l��

�k�

�
�k l� � �l � �

�� l�

m

�
� �
	���

These three rules� illustrated in Figure 
	
� are all of the form �
	�� and are all centrally
symmetric	

�� Simple Integrand Discretizations and a Set of Elementary Integral

Discretizations� In this section we return to the treatment of

If� �

Z Z
R

f��x� y� dxdy�

where the integrand is given by

f��x� �
�u

�ni
�x�a�x�

�v

�nj
�x�� ��	��
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Fig� ���� The abscissas used by quadrature rules ������� ������� and ����	� for m � �� These
rules are a
ne transformations of one another�

This integrand may be approximated by

F �x� h� �
�

h�
�u�x� lih�� u�x�� a�x� �u�x� ljh�� u�x�� ��	
�

or many other expressions of similar form	

Definition ���� A simple discretization F �x� h� of f��x� is a functional de�
pending on u
 v
 and a in the form

F �x� h� �
�X

���

��
h�
u�x� h���a�x� h��v�x� h���� ��	��

where for � � �� � � � � � all of �� � � � �� � R
� are �xed vectors and �� � R are �xed

numbers and where

lim
h��

F �x� h� � f��x�� ��	��

for all points x and all functions u
 v
 and a for which the limit exists�
The reader may verify that F �x� h� in ��	
� satis�es both ��	�� and ��	��	 Additional

simple discretizations appear in ��	��� ��	���� and ��	�
�� below	
In the remainder of this paper� we shall mainly consider symmetric simple dis�

cretizations	 These satisfy F �x� h� � F �x��h�	 To de�ne these� we use standard
notation for mean and di�erence operators	 Thus� for a general vector p and a function

g�x�� we de�ne

	�p�g�x� ��
�



�g�x� p� � g�x� p�� ��	�

and

��p�g�x� �� g�x� p�� g�x� p�� ��	��

Where no confusion is likely to arise� we may suppress h� li� and x and employ an
abbreviated notation as follows�

Mia �� 	�hli�a�x� �
a�x� hli� � a�x� hli�



� ��	��

�



which is an approximation to a�x�� and

Diu ��
�


hjlij
��hli�u�x�� ��	��

which is an approximation to �u��ni	 Naturally� DiMju is also an approximation to

�u��ni� and MiMja is also an approximation to a	 We note that all these approxima�
tions depend on h� and for su�ciently smooth functions the approximation error is even
in h	

There are many simple discretizations of f��x� in ��	�� above	 For example� when
i � � and j � 
� the simplest symmetric discretization can be written in our abbreviated
notation as

F �x� h� � �D�u� a �D�v� � ��	��

and another simple discretization is

F �x� h� �
�

�h�jl�jjl�j
���hl��	�hl��u�x�� a�x� ���hl��	�hl��v�x�� ��	���

� �D�M�u� a �D�M�v� �

Still another discretization of ��	�� is obtained when a�x� in ��	��� is replaced by

	�hl��	�hl��a�x�� ��	���

In the abbreviated notation the latter function is written

F �x� h� � �D�M�u� �M�M�a� �D�M�v� � ��	�
�

All of these functions can be evaluated for nonzero h and reduce to f��x� when h tends
to zero	

In the following we shall use the standard de�nition of an ��neighborhood of R�
namely�

R� � fx � R�j �y � R � jjx� yjj 
 �g�

where jj 	 jj denotes the Euclidean norm� and we denote by Cp�R�� the space of p times
continuously di�erentiable functions on R�	

Theorem ���� Let the components of f��x� satisfy

a�x� � Cp
�

�R��� u�x� � C
p���R��� v�x� � C

p���R��� ��	���

where p� � p � � for some � � � and some integer p � �� and let F �x� h� be a simple

discretization of f��x�� Then there exists h� � � such that
 for all h satisfying jhj 
 h�


F �x� h� � f��x� � hf��x� � 	 	 	� hp��fp���x� � hpGp�x� h�� ��	���

�



where

fj�x� �

�j

�hj
F �x� h�j

h��

�j � ���
� Cp�j�R� ��	��

and where the remainder term has a �nite bound of form

Gp�x� h� 
 �Gp� for all x � R� ��	���

Proof	 This theorem follows directly from the de�nition of simple discretizations
and applying Taylor expansions to the component functions	

In all the cases considered in this article� the conditions attached to f��x� in this
theorem are too stringent	 We call F �x� h� factorizable when

F �x� h� � ���x� h����x� h��

where ���x� is a discretization for a�x� and where ���x� is a discretization for �u

�ni

�v

�nj
	

Theorem �	
 is valid with p� � p under the additional hypothesis that F �x� h� is fac�
torizable or may be expressed as the sum of factorizable components	 Examples of
non�factorizable simple discretizations do not seem to occur naturally� but they are
readily contrived	 When F �x� h� is any factorizable simple discretization� then

�F �x� h� � F �x� h� � hD��a�D��u�D��v�

is of the form ��	��� and the speci�cation p� � p�� is required to validate Theorem �	
	

We now de�ne the principal new concept in this paper	
Definition ���� Let Q�m��R� be any integration rule of form ����� or ����� above�

Let F �x� h� be a simple discretiation of f��x� as in De�nition ���� Let � be a �xed

nonzero parameter� Then the set of quantities

J�m� � Q�m��R�F �x� ��m�� for m � �� 
� �� 	 	 	

is called a set of elementary discretizations of If��x��
Since Q�m��R� is simply a sum of function values of F � and each such function

value has the form described in ��	�� above� it follows that J�m� is also a weighted sum
of function values of the form ��	��	 J�m� may be evaluated once one has available

�� a speci�cation of rule Q�R��

� a speci�cation of F �x� h�� which requires u�x�� a�x�� and v�x� to be speci�ed

individually� and
�� a speci�cation of the parameter �	

We come now to the fundamental theorem of this paper	 All the results and methods
described later in this paper are based on the following	

Theorem ���� Let f��x� satisfy the conditions ������ given in Theorem ���� Let

F �x� h� be a simple discretization of f��x�
 and let J�m� be the set of elementary dis�
cretizations de�ned in De�nition ����

�



Then for a positive integer m

J�m� � If� �

p��X
q��

Dq

mq
�
Ep�m�

mp
� ��	���

where the constants Dq are independent of m and the remainder term Ep�m� is uni�
formly bounded�

Proof	 Let h� be de�ned as in Theorem �	
	 The expansion ��	��� is valid for

h 
 h�� hence trivially�

Q�m��R�F �x� h� �

p��X
k��

Q�m��R�fk�x�h
k �Q�m��R�Gp�x� h�h

p� ��	���

But� since fk�x� � Cp�k�R�� we may apply the result of Theorem 
	� to each term
with p replaced with p � k� speci�cally�

Q�m��R�fk�x� �

p���kX
���

B��Q�R� fk�

m�
�
Cp�k�Q�R� fk�m�

mp�k
� ��	���

Substituting ��	��� into ��	���� treating h and ��m as terms of the same order� and
assembling terms of the same order� we �nd

Q�m��R�F �x� h� �

p��X
l��


 X
k���l�k����

B��Q�R� fk�hk

m�

�

�

p��X
k��

Cp�k�Q�R� fk�m�hk

mp�k
�Q�m��R�Gp�x� h�h

p� ��	
��

Finally� we set h � ��m� where � �� �	 This reduces to

J�m� � If� �

p��X
l��

Dl

ml
�
Ep�m�

mp
�

where

Dl �
lX

k��

Bl�k�Q�R� fk��
k ��	
��

and

jEp�m�j �

p��X
k��

�Cp�k�k�
k � �Gp�

p�

Here �Cp�k�k and �Gp are bounds given by �
	�� and ��	��� to the corresponding term in
��	
�� above	

	�



When R � �� an integral representation for each term of B� in ��	��� may be

constructed by using ��	�� above	 Corresponding integral representations also exist
when R � �� but their structure is much more complicated	 One of the advantages of
the method based on this theory is that the knowledge of explicit representations of B�

is not needed	

Theorem ���� Under the hypothesis of Theorem ���
 if both F�x
h� is even in h

and Q�R� is centrally symmetric
 then the expansion ������ is even in m���
Proof	 When Q�R� is centrally symmetric� it follows from Theorem 
	� that

B��Q�R� fk� � � for all � odd�

and when F �x� h� is even� then its Taylor expansion ��	��� is even� giving

fk�x� � � for all k odd	

In ��	
�� we note that when l is odd� one of k and l�k is odd� giving Dl � �� establishing
the result	

An interesting situation occurs in the case where a�x�� u�x�� and v�x� are poly�

nomials such that the integrand f� is itself a polynomial of degree d	 An immediate
consequence of ��	�� and ��	�� is that the coe�cient functions fj�x� in ��	�� in the
Taylor expansion ��	��� of F �x� h� now become polynomials of degree d� j when j � d

and vanish when j � d	 It follows from Part � of Theorem 
	� that

B��Q��� fj� � � for � � d� j and B��Q��� fj� � � for � � d � j � ��

Applying this in ��	
�� gives the following theorem	

Theorem ���� Let a�x�
 u�x�
 and v�x� be polynomials such that f��x� is a
polynomial of degree d� Then
 under the hypothesis of Theorem ���
 the expansion ������
is �nite
 the �nal nonzero term being D�
 where � � d when R � � and � � d�� when
R � ��

�� Suitable Discretizations� In the preceding section we de�ned an elementary
discretization J�m� in some generality	 This allowed an almost arbitrary choice for

quadrature rule Q� many choices for the simple discretization F �x� h� �some of which
have been mentioned�� and any positive number for the incidental parameter �	 Natu�
rally� it is possible to construct J�m� by making these choices arbitrarily	 The resulting
J�m� would have the expected asymptotic expansion in ��m but might be unduly un�

economic in the number of function values required	 For example� the use of ��	�
� for
F �x� h� requires four function values of each of u� a and v� located at points x
hl�
hl�	
These values would be needed for each abscissa x required by the quadrature rule Q�m�	

Just as in standard quadrature rule design� the discretization J�m� may be con�

structed to reduce the overall number of function values it requires	 The reader will be
familiar with the concept of economizing using point sharing	 Here� if we choose Q�m�

to be either the product trapezoidal rule or the midpoint rule� and choose � � ��
� we

�nd a situation in which nearly all the points mentioned above are shared� resulting in
asymptotically only one function value of each constituent function per abscissa	 This

		



would leave some points outside the region R	 When R is the parallelogram �� this

can be recti�ed by replacing the product trapezoidal rule by the center rule �
	��	 It is
less obvious how to do this and use only interior points in the case of the triangle	

This section is devoted to the construction of cost�e�ective self�contained discretiza�
tions	 To this end we list three traditional guidelines	

�G�� The discretization J�m� should require only m� � O�m� function values of a� u�
and v	 In the limit this is only one function value per cell	

�G�� J�m� should have an even expansion in m��	
�G�� The discretization J�m� should be self�contained with respect to R� that is� it

should require function values only within the closure of R	
We do not wish to imply that these are critical� or even desirable� properties in all
applications	 However� there are contexts in which these properties are desirable	 The

rest of this section brie y treats the simple discretizations �outlined above� for the
parallelogram and then takes up the somewhat involved question of how to satisfy
these guidelines in the case of the triangle	

���� Discretizations for ��

Discretization �� In this subsection we return to our original de�nition of f��x��
embracing all four components	 One of the simplest discretizations for

If��x� �

Z Z
�

�X
i�j��

�u

�ni
ai�j�x�

�v

�nj
dxdy ��	��

may be obtained by using the center rule �
	�� and the simple discretization ��	��� in

each of the four components and with h � ��
m	 Speci�cally� we employ

Q�m����� �
A���

m�

m��X
k��

m��X
l��

�
�uk�l

m

�
��	
�

and

F �x� h� �
�X

i�j��

�DiM	�iu� aij �DjM	�jv� ��	��

to �nd

J�m� � Q�m����F
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This requires function values for u�x� and v�x� on the �m���� points of the vertex grid

x � tk�l�m� k� l � �� � � � �m �see Figure �	�� and function values for a�x� on the center
grid x � uk�l�m� k� l � �� � � � �m� � �see Figure 
	��	
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Fig� ���� Vertex grid for � and �� These points are used for the evaluation of u and v in
Discretizations � and � and for the evaluation of u� v� and a in Discretizations �� 	� �� �� � and ��

Many variants of the discretization are possible and may be obtained by di�erent
quadrature rules Q��� or di�erent F �x� h� or both	 We mention only one	

Discretization �� This di�ers from Discretization � in that F �x� h� in ��	�� is replaced

by ��	�
�	 Thus� ai�j in ��	�� is replaced by M�M�ai�j	 This replacement has the e�ect
that all three component functions u�x�� v�x�� ai�j�x� are evaluated at the �m���� points
of the vertex grid	

���� Discretizations for �� The reason for the somewhat more complicated na�
ture of the application in this section is that it appears that no general discretization
for the triangle exists that satis�es all three guidelines �G��� �G
�� and �G��	

To see the nature of the problem� the reader is invited to consider what happens
when Discretization 
 for the parallelogram is modi�ed for the triangle in an obvious
way	 To e�ect this� we replace the center rule Q�m���� in ��	
� by the corresponding
rule for the triangle� Q�m���� given explicitly by �
	���	 This rule di�ers from the rule

�
	�� for the parallelogram �as used in Section �	�� only by the factor �m�k�l��� which
is inserted in the sum	 This factor is the Heaviside step function de�ned in �
	���	 Its
e�ect is to curtail the sum so that instead of summing over all points in � on the center
grid� we sum over only those in �� applying a factor of ��
 to those on the boundary

of �	
When one inserts the coe�cient �m�k�l�� into ��	�� and examines the remaining

terms� one sees that most abscissas lie indeed within �	 However� a closer examination
of those terms in the sum for which uk�l lies on an edge �that is� for which k� l � m���

reveals that of the four points required by DiMi��u�uk�l�m�� two lie on the common
edge� one interior to �� and one outside	 Consequently� this discretization for the
triangle is not self�contained	 But it does satisfy guidelines �G�� and �G
� above	 For

future reference� we term this Discretization �	

Discretization �� This di�ers from Discretization 
 by the insertion of the factor
�m�k�l�� in ��	��	

	�



Having found �
	��� in Discretization � mildly unsatisfactory� we treat the triangle

directly	 We deal separately with each of the four components of ��	��	

Discretization ��

If� �

Z Z
�

�u

�n�
a�x�

�v

�n�
dxdy�

Using the rule �
	�
� and the somewhat simpler simple discretization

F �x� h� � �D�u��M�a��D�v�� ��	�

we �nd

J�m� � Q�m����F
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where xk�l � ��k� �
��l�� ll��	 This requires function evaluations of u�x�� a�x�� and v�x�

on all points of the vertex grid� except one� speci�cally� it requires all points of the form
tk�l�m� � � k � l � m �with the trivial exception of the point t��m � l��	

The reader will notice that this is hand tailored to the situation in which only
derivatives in the direction of one of the edges of the triangle are required	 In this case
it is the direction n� � l��jl�j	 But the discretization satis�es the guidelines �G��� �G
��
and �G��� and it requires function values of all quantities on the vertex grid x � tk�l�m�

x � �	
We now examine other discretizations obtained naturally by using linear operations

to transform the triangle � onto itself	 One of these turns out to be the following	

Discretization 	�

If� �

Z Z
�

�u

�n�
a�x�

�v

�n�
dxdy�

Here J�m� is an obvious adjustment of ��	��� namely�

J�m� �
A���
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m��X
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�k �
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�
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�yk�l
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�
v
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m

�
� ��	��

where yk�l � �kl� � �l � �
�
�l��	 This again requires function evaluations of u�x�� a�x��

and v�x� on the vertex grid	
Before we discuss the next discretization� we de�ne l	 � l� � l�� together with the

subordinate de�nitions	 Thus n	 � l	�jl	j and M	a�x� and D	u�x� are properly de�ned

by ��	�� and ��	��� respectively	 We note that
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Discretization 
� Here
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The discretization is given by
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where uk�l � �k � �
�
�l� � �l� �

�
�l�	

Note that Discretizations �� � and � have isomorphic geometric properties and
that all these satisfy �G��� �G
�� and �G��	 We have derived these by using the theory

of Section � to develop Discretization � and then a�ne transformations	 However� we
could have equally well used the theory directly for Discretizations  and �	 We would
have needed the two rules �
	�
� and �
	���� respectively� and obvious variants of ��	�	

To obtain a discretization for If� in general� we still lack a discretization of the

cross term

�u

�n�
a
�v

�n�
�

In general� this cannot be constructed from the discretizations above	 But when the

matrix A�x� is symmetric for all x� we need only treat

�u

�n�
a
�v

�n�
�

�u

�n�
a
�v

�n�
�

with a�x� � a���x� � a���x�	 We can provide such a discretization	

Discretization �� �A symmetric�When B �and� by extension� A� is symmetric� one
may proceed by setting �see also Lemma 
	� in R�ude �����
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and constructing an overall discretization J�m� as the sum of Discretizations �� �� and 
applied to the respective terms in ��	���	

Each of the three discretizations used to compose Discretization � satis�es guidelines
�G��!�G�� separately	 With trivial exceptions� the same m�m � ���
 function values

are used in each discretization	 All function evaluations are located on the vertex grid	
It is pertinent to note that R�ude ���� has already published a discretization corre�

sponding to Discretization �	 This is as follows	

Discretization �� Like Discretization �� this employs quadrature rule �
	�
�� but
instead of ��	� it uses the simpler

F �x� h� � �D�u�a�D�v��

As a rule for the ��� component only� it is apparently just as powerful as Discretiza�
tion � above �as is illustrated below in the examples�	 However� it uses function values

of a�x� on a product center�vertex grid	 Hence� variants formed by rotating the triangle
into itself use a di�erent set of function values	 So� if one were to form a composite of
this rule corresponding to Discretization � above� one would �nd that the number of

function evaluation of a�x� required is �m� �O�m�� violating guideline �G��	
In Table �	� we brie y summarize the features of the various discretizations intro�

duced above	

Table ���

Summary of discretizations

" R f� Quadrature rule Q Discretization F

� � A general �
	�� ��	��


 � A general �
	��
��	�� with aij replaced by

M�M�aij

� � A general �
	���
Discretization 
 truncated
to triangle

� � ��� component only �
	�
� D�uM�aD�v� as in ��	�

 � 
�
 component only �
	��� D�uM�aD�v

� � ��� component only �
	��� D	uM	aD	v

� � A symmetric composite of Discretizations �� � and �

� � ��� component only �
	�
� D�uaD�v

Additionally� we list the following features�

� All these discretizations satisfy guideline �G�� �m� � O�m� function values�
and �G
� �even expansion�	

� All except Discretization � satisfy guideline �G�� �self�contained�	
� Discretizations 
!� use function values of u� a� and v located on the vertex

grid	
� Discretizations � and � use function values of u and v on the vertex grid	

	



We remark that only in some applications are these guidelines likely to be impor�

tant	 For example� the guideline �G�� about the location of points for function evalua�
tion is problem dependent	 A user may prefer di�erent grids	 For some smooth functions
the user may have no objections to using points well outside the speci�ed region� indeed�
in some cases� he may prefer to do this	 There is nothing in the construction technique

described above that prevents individual creativity of this sort	 Even guideline �G��
is not sacrosanct	 If one expects an extrapolation table of signi�cant size� the early
discretzations become relatively unimportant and are often discarded	 However� these
guidelines are traditional in character� and it is useful to see to what extent they can

be accommodated	
The only guideline we have found to be of almost universal acceptance is that

the expansion should be even	 We know no instance in the application of Richardson

extrapolation where a full expansion has been preferred to an even expansion	

	� Extrapolation� We follow the notation of the excellent description of Romberg
integration given in the fundamental paper of Bauer� Rutishauser� and Stiefel ���	 Here

we are dealing with a discretization J�m� that satis�es an asymptotic expansion� even
in m as follows�

J�m� � E� �
E�

m�
�

E�

m

� 	 	 	

Ep

m�p
�O�m��p���� �	��

and we are interested in obtaining numerical approximations to E� � If�	

In general� J�m� may be evaluated for any integer value of m� and extrapolation is
particularly useful when the cost of evaluating J�m� increases rapidly with m	 The �rst
step in an extrapolation process is to choose what is known as a mesh ratio sequence� a
set of values ofm for which J�m� is to be evaluated	 The classical sequence is �geometric�

G � �� 
� �� �� ��� 	 	 	 � �	
�

Another sequence introduced by Bulirsch �
� and Bulirsch and Stoer ��� is

F � �� 
� �� �� �� �� �
� ��� 	 	 	 �

and the most economic but ultimately unstable harmonic sequence �in ��m� is

H � �� 
� �� �� � �� �� �� 	 	 	 �

Di�erent contexts are known in which any of these is more convenient than the other
two	

Given p�� values of J�m� for p�� distinct values of m� an approximation �E� to E�

may be de�ned as follows� One may drop the remainder term in �	�� and substitute
successively these p� � values of m to obtain p� � linear equations in p� � unknowns
�E�� �E�� �E�� � � � � �Ep� which are approximations to E�� E�� � � � � Ep� respectively	

When the p�� distinct values of m are mk�mk��� � � � �mk�p� the solution �E�� which

we denote by Tk�p� can be computed as part of the Romberg T�table� which is a table

	�



containing distinct approximations to E�	

T��
T��

T�� T��
T�� T�	

T�� T�� � � �

T�� � � �

T	� � � �

� � �

� � �

The �rst column of this table has entries Tk�� � J�mk�� and element Tk�p is an extrapolant

to E� based on J�mi�� i � k� k � �� � � � � k � p	 Tk�p may be obtained by solving a linear
set of equations ME � J� where the elements of M are �mi����j�	 In general� one needs
to solve a di�erent set of p linear equations for each individual extrapolant Tk�p� and it
may be convenient to use a linear equation solver	

In our case� because �	�� is such a simple expansion� an aesthetically satisfying
alternative is to employ the Neville algorithm

Tk�p �
Tk���p��m

�
k�p � Tk�p��m

�
k

m�
k�p �m�

k

�

This is discussed in many places� including ���	 The entries in Tables �	�!�	� below are
elements of the Romberg table� obtained by using J�mi� � Ti��� and the geometric mesh
sequence �	
�	

The Romberg table is convenient because it provides a selection of approximations
to E�	 This selection is widened as each new discretization J�m� is calculated	 The
columns of such a table converge	 Heuristic estimates of the numerical accuracy of the
elements of the table can be made based on the numerical closeness of near�by elements	

A theoretical curiosity occurs when� as in Theorem �	�� a�x�� u�x�� and v�x� are
polynomials such that f��x� is a polynomial of degree d	 Then the expansion ��	���
terminates� the �nal nonzero term being D� with � � d or � � d��	 Thus the expansion
��	��� also terminates� the �nal nonzero term being E� with 	 � b��
c	 This means

that the procedure to compute E� is exact when p � 	� since the dropped remainder
term is zero	 We summarize this property in the following theorem	

Theorem ���� When a�x�
 u�x�
 and v�x� are polynomials such that f��x� is a

polynomial of degree d
 the approximations Tk�p �those in the pth column� are exact when
p � b��
c
 where

���� � d and ���� � d � ��

Naturally� any element Tk�p can be expressed in a sum of the form

�X
n��

wnu�x
�
n�a�x

�
n�v�x

	
n��

	�



This demonstrates the character of Tk�p as a quadrature rule� the theorem establishes

that the quadrature rule is of polynomial degree 
p � � �or 
p�	


� Examples� The four numerical examples in this section are included simply
to illustrate this method in operation and to draw attention to some of its features	

We have not compared our results with those obtained using other methods	 In all
examples we obtain an approximation to

f��x� �
�u

�x
a
�v

�x
�

where � is the unit triangle with vertices

P� � ��� ��� P� � ��� ��� P	 � ��� ��

and

a�x� y� �� �
�q

�x� ��
�� � �y � ���
� u�x� y� � x	y�� v�x� y� � x	 � y�� ��	��

The incidental parameter � was set to ��
 in Example �� and to � � ���
 in the
other three	 In Examples � and 
� we used Discretization �	 In Example � we used

Discretization �	 In Example � we evaluated the derivatives analytically which has
the e�ect of reducing the calculation to an application of Romberg integration to the
integrand

f��x� y� � �x
y�a�x� y� ���

In all examples we used the geometric mesh sequence �	
� with m � �� 
� �� � � �	 In the

tables� we have listed the absolute errors

Ek�p � Tk�p � If�

and the observed convergence rates Ek�p�Ek���p	
For If� we used values determined by symbolic integration with respect to x and

numerical integration with respect to y using the symbolic mathematics package Maple

with 
� digits prescribed accuracy	 For � � ��
 � If� � ����
�������
����� and for
� � ���
� If� � ��������
�
�������	

We note that a�x� y� �� has a singularity at ���
����	 In the second integrand
�Examples 
� �� and ��� this is uncomfortably close to the triangle �	 The results

indicate that this method �as would most other numerical quadrature methods� �nds
the second integrand more di�cult than the �rst	 Like the �rst� the second integral is
properly evaluated� however� at a greater expense	 It is well known that a singularity
close to the region of integration perturbs the observed convergence rates for small m�

that is� when the elementary triangles are still large	 Naturally� the correct asymptotics
should be observed when the discretization becomes su�ciently �ne �m large enough�	

	�



Table ���

Romberg table for Example � �� � 	�
� �Discretization ��
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Table ���

Romberg table for Example � �� � 	��
� �Discretization ��
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Table ���

Romberg table for Example 	 �� � 	��
� �Discretization ��

m Ek�� Ek�� Ek�� Ek��

	 ����E��	

 	����E��	 
��	 �	�E��

� ����E��
 ���� �����E��� 	��	� 
���
E���
� 	�	�E��
 ���� 
����E��� 	��� ��
�
E�� �����
 �	��
�E���
	 
��	�E��� ���� 	�
�	E��� 	���� �
���E�� 
�	
 �
��	
E�� ����
�
 ��
��E��� ���� ����E��� 

��� �
����E��� 	
��� �
��
�E��� 	���
� 	��
�E��� ���� 
���E��� 
���� �	�
��E��� 	��� ������E��� 

���
	
� �����E��� ���� 	�	��E��� 
	�� ���	
�E�	� ����
 �
�	��E�	� ���



Table ���

Romberg table for Example � �� � 	��
� �Analytic derivatives�

m Ek�� Ek�� Ek�� Ek��
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Reference to Examples 
� �� and � reveals that the cost�e�ectiveness of the method

is not particularly sensitive to the details of the discretization	 The drawback of Dis�
cretization � does not reveal itself here� If other derivatives were required with Dis�
cretization �� a di�erent set of locations for the function evaluation of a�x� would be
required	

The use of the mean operator to approximate a�x� by ��	��� in cases when the
function values are readily available may appear to be introducing an unnecessary com�
ponent in the error	 However� if the result is to be integrated by using an equally spaced
formula� this extra error may well be illusory	 As a trivial example� suppose that at the

points x � �j � �
�
�h� the function f�x� is approximated by the mean

�f�x� �
�




�
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h
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and the integral If is approximated by Mf � a midpoint m panel rule with m � �
h
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The e�ect of the mean operator is to replace the midpoint rule approximation by the
endpoint rule approximation	 Both these rules have similar characteristics� and the
quality of the results is generally the same	

�� Concluding Remarks� The construction of numerical quadrature techniques
for the integral IruBrv is intrinsically as wide a research area as is numerical quadra�
ture over squares and triangles	 However� at the present time� applications are far
less widespread	 Here� we have covered a signi�cant part of the theory� that which

corresponds to extrapolation quadrature in standard numerical quadrature	
Sections 
 and � cover the theory in a somewhat general way	 In Section � the new

de�nitions and theorems are given	 These include a de�nition of a discretization of the
integrand f��x� by F �x� h�� its use in constructing an elementary discretization J�m��

and the basic theorem that allows extrapolation	
The main results are in Section �� where several elementary discretizations J�m�

are discussed	 These approximations to the integral If� are designed to be used in
extrapolation quadrature� where they would appear in the initial column of a Romberg

table	 These particular discretizations conform� as far as is feasible� to three stated
guidelines of a traditional nature� which prescribe economy in terms of function values�
and containment of abscissas in the integration region	

However� we have kept in mind the user with a special problem who may need to
construct a variant of the method described here	 For this reason� we have presented
a somewhat general theory� which in Section � is specialized to a conventional problem
context	 Such an unconventional user may exploit the results given in Sections 
 and �

to construct a specialized discretization that conforms to his problem speci�cation	
The �nal sections comprise a brief summary of the extrapolation technique and its

subsequent use in four simple illustrative numerical examples	
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